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Interference fringes are measured in the diffraction from the surface as well as

from the lateral surface of an Si single-crystal strip which is deformed in

cantilever bending as a function of the tip displacement. The interference fringes

are observed only when the bending strain is applied. Both interference fringes

change conspicuously by increasing the bending strain. The number of the

interference fringes changes, and the positions and heights of the peaks in the

fringes change. These variations can be explained by the change of the

interference between the beams in multiple Bragg–Laue modes and those of

mirage diffraction based on the dynamical theory of diffraction.

1. Introduction

Interference fringes were observed in X-ray diffraction from

the lateral surface of a Ge single-crystal strip in a multiple

Bragg–Laue mode (Fukamachi et al., 2004, 2005). The inter-

ference fringes are caused by interference between the

internal beams in the Bragg–Laue (BL) mode and those in the

Bragg–Bragg–Laue (BBL) mode when the incident beam is

regarded as a spherical wave (Hirano et al., 2008, 2009a,b). In

these studies the diffraction is measured when the linear

absorption coefficient � is minimized as a result of the

dynamical (Borrmann) effect and the path length of X-rays is

quite large. According to the dynamical theory, when � is

minimized the angle � between the diffraction plane and the

actual propagation direction of the wavefield varies from zero

to the Bragg angle �B (Yoshizawa et al., 2008; Hirano et al.,

2008, 2009a,b). The propagating direction is given by the

direction of the Poynting vector S (we call the beam corre-

sponding to S the ‘refracted beam’) whose direction does not

coincide with either the diffracted beam direction or the

transmitted beam direction.

Some X-ray beam paths in multiple BL diffraction modes

are shown in Fig. 1. The angle � is defined in order to specify

the glancing angle between the incident surface and the

direction of the incident beam as shown in Fig. 1(a). In the

range � < �1 = tan�1ðH=LÞ, the beam corresponding to S1

directly reaches the lateral surface (BL mode). Here H is the

crystal thickness and L is the distance between the incident

point of X-rays and the crystal edge. In the range �1 � � � �2 =

tan�1ð2H=LÞ, the beam corresponding to S2 reaches the back

surface first. Then a part of the beam is reflected and reaches

the lateral surface (BBL mode), and the rest of it is trans-

mitted through the back surface.

In a crystal with a constant strain gradient, the ray trajec-

tories of S1, S2 and S3 are shown in Figs. 1(b) and 1(c). In

Figure 1
Schematic illustration of the beam geometry in multiple BL modes. �B is
the Bragg angle, � the angle between the diffraction plane and the
direction of the refracted beam, H the crystal thickness and L the
distance between the incident point of the X-ray and the edge of the
crystal. The beam geometries are (a) in an unbent crystal, (b) in a weakly
bent crystal and (c) in a crystal bent more strongly. Ph1ih represents the
intensity of the diffracted beam from A1 (the incident point) and Ph2ih

represents the intensity of the beam coming out of the crystal at A2 after
reflection from the back surface. Ph1it and Ph2it represent the intensities of
the transmitted beams from the refracted beams S2 and S3, respectively.
P 0h and P 0t represent the intensities of diffraction from the lateral surface
in the diffracted and transmitted beam directions. Pm and Ph1im represent
the intensities of the mirage diffraction and the mirage fringe from the
bent crystal.



Fig. 1(b), since the path of the refracted beam S1 is a branch of

a hyperbola (Gronkowski & Malgrange, 1984; Authier, 2001),

the beam corresponding to S1 intersects the crystal surface at

A2 . A part of the beam is reflected and reaches the lateral

surface, while the rest of it contributes to the diffracted beam

coming out of the crystal at A2 on the surface. We call the

latter diffraction ‘mirage diffraction’. Relationships between

the mirage diffraction and elastically bent crystal with a

constant strain gradient have been investigated by Yan &

Noyan (2006) and Yan et al. (2007), who theoretically analysed

the measured diffraction by using the wavefield.

At A3 in Fig. 1(c), interference fringes are caused by the

interference between the two refracted beams S1 and S2 . We

call these interference fringes ‘mirage fringes’. It is noted that

mirage fringes are different from mirage diffraction. The

mirage fringes are caused by the interference between two

mirage diffraction beams. In Bragg section topographs of a

bent crystal, Chukhovskii & Petrashen’ (1988) studied inter-

ferometric fringes caused by this interference. As X-ray

trajectories change in a bent crystal, it is expected that inter-

ference fringes in the diffraction from the lateral surface of a

bent crystal are quite different from those of the unbent

crystal.

In this paper we report on the measured variations of

interference fringes in diffraction from the lateral surface in

the multiple BL mode as a function of bending strain and the

comparison of them with the mirage fringes from the surface

of the crystal.

2. Experiments

The sample was an Si strip, 40 mm long, 10 mm wide and

0.099 mm thick. It was clamped at one end. The other end

could be deflected to a known displacement D by the canti-

lever tip through a micrometer drive as shown in Fig. 2.

The measuring system is schematically shown in Fig. 3. The

experiments were carried out by using X-rays from synchro-

tron radiation at bending-magnet beamline BL-15C of the

Photon Factory, KEK, Tsukuba, Japan. The X-rays were

incident on the sample crystal in the direction normal to the

bent direction (Fig. 2). The X-rays were �-polarized and were

monochromated using an Si 111 double-crystal mono-

chromator. The X-ray energy was 11100 � 0.5 eV. The vertical

and horizontal beam widths after slit 1 were adjusted to be

30 mm and 1000 mm, respectively. The transmitted (Pt) and

diffracted (Ph) intensities as well as the diffraction intensities

from the lateral surface in the transmitted (P 0t ) and diffracted

(P 0h) beam directions were recorded on the nuclear plate

(ILFORD L4, emulsion thickness 25 mm) and were measured

using scintillation counters. The distance L was varied

between 890 and 940 mm depending on the displacement D.

The distance from the lateral surface of the crystal to the

nuclear plate was 17 mm.

3. Experimental results

Fig. 4 shows photographs of diffracted patterns of Ph, P 0h (left),

Pt and P 0t (right) recorded on the nuclear plate when the
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Figure 2
Sample and bending jig geometries. The X-rays are incident along the
direction normal to the bending direction.

Figure 3
Schematic diagram of the measuring system. SR stands for the
synchrotron radiation X-ray source and SC the scintillation counter.
The inset shows a magnification of the region around the sample crystal.

Figure 4
Photographs of Ph and P 0h on the left, and Pt and P 0t on the right. The
displacement D is (a) 0 mm, (b) 10 mm and (c) 50 mm. The measured
distance L is 940 mm in (a) and (b), and 890 mm in (c).



intensities of P 0h were maximum. Here, (a) shows photographs

from the unbent crystal, while (b) and (c) show those from the

bent crystal. The cantilever-tip displacement D is 10 mm in (b)

and 50 mm in (c). The interference fringes are observed in both

diffraction patterns of P 0h and P 0t from the lateral surface. In

Fig. 4(a) the fringes in P 0h and P 0t on the back surface side are

clearly seen but the fringes on the surface side are blurred. In

Fig. 4(b) the fringes in P 0h and P 0t are clearly seen both on the

surface side and on the back surface side. In Fig. 4(c), two

intensity maxima on the surface side are clearly seen. A weak

wide band (as indicated by Ph2ih ) is seen in the upper part of P 0h
in Fig. 4(a). This band is caused by the diffracted beam

through A2 on the surface after reflection at the back surface

as shown in Fig. 1(a). A wide band (as indicated by Ph1im ) is seen

in the upper part of P 0h in Fig. 4(c), which is caused by the

interference between two mirage diffraction beams in the BB
2

mode and in the BB mode shown in Fig. 1(c). Here B stands

for the mirage diffraction in the Bragg mode.

Fig. 5 shows the intensity profiles recorded on the nuclear

plate and those read at the position 0.33 mm from the left edge

(indicated by the dashed line) of the photographs shown in

Fig. 4. Figs. 5(a1)–5(a6) show the intensity profiles of the

diffraction from the surface (Ph) together with those from the

lateral surface in the diffracted beam direction (P0h).

Figs. 5(b1)–5(b6) show intensity profiles of the diffraction

from the back surface (Pt) and those from the lateral surface

in the transmitted beam direction (P 0t ). In Fig. 5, the curves

(1), (2), (3), (4), (5) and (6) are intensity profiles when the

displacement D is 0, 10, 20, 30, 50 and 70 mm, respectively.

There are five interference fringes in P 0h when D is changed

from 10 mm to 70 mm. Similarly, there are five interference

fringes in P 0t when D is 10, 20 and 30 mm as shown in

Figs. 5(b2)–5(b4). But for larger D the number of fringes

decreases. There are four and three fringes when D is 50 mm

(b5) and 70 mm (b6), respectively. Peaks in P 0h and P 0t are

numbered as peak 1, peak 2 and so on from right to left. Each

position of the peaks shifts from the back surface side (y0 = H 0

or y00 = H 00) to the surface side (y0 ¼ 0 or y00 = 0) both in P 0h and

P 0t . Although peak 5 is not clearly seen in either curve (a1) or

(b1) when the crystal is not bent, it appears in the curves (a2)

and (b2) when the strain is applied. The height of peak 5

becomes maximum in curves (a3) and (b3). The weak peak

Ph2ih on the left side of P 0h in Fig. 5(a1) is the intensity of the

reflection from the back surface as shown in Fig. 1(a). The

peak Ph1im on the left side of P 0h in Fig. 5(a5) is a mirage fringe.

The peaks Ph1im and Ph2im in Fig. 5(a6) are also mirage fringes.

The difference between the origin of the peak Ph2ih and that of

the peak P 0h can be understood by considering the beam

trajectories in Fig. 1. The left edge of the peak Ph2ih is deter-

mined by the beam which is incident on the crystal with the

glancing angle �max and reflected from the back surface shown

in Fig. 5(a1). This means that �max can be determined by the

left edge position of Ph2ih . Using the value of �max , the

maximum value of the deviation parameter jWmaxj can be

determined as described below.

4. Theoretical analysis

In order to calculate the intensities of mirage fringes,

diffraction under a constant strain gradient is considered. The

dispersion surface in the two-beam approximation of the

dynamical theory of diffraction is given by

Y2
¼

X2

tan2 �B

� X2
0 ; ð1Þ

where �B is the Bragg angle. The absorption effect is not taken

into account. Parameter X0 is given by X0 = 1=ð2�Þ with � =

� cos �B=Cj�hj, where � is the X-ray wavelength, C is the

polarization factor and �h is the hth Fourier component of the

X-ray polarizability. According to Gronkowski & Malgrange

(1984), the trajectory of the refracted beam under strain � is

given by
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Figure 5
Intensity profiles (linear scale) of Ph and P 0h in (a), and Pt and P 0t in (b).
The displacement D is (1) 0, (2) 10, (3) 20, (4) 30, (5) 50 and (6) 70 mm.
The diamonds are measured intensities. The dashed lines from (a3) to
(a6) are calculated intensities of mirage fringes. The thin solid line in (a1)
shows calculated intensities of the interference between the beam in the
BL mode and the beam in the BBL mode according to the method of
Hirano et al. (2009a,b). The absorption effect is taken into account. The
grey regions in (a5)–(a6) and (b5)–(b6) correspond to the dark regions
shown in Fig. 1(c). Ph1im in (a5), Ph1im and Ph2im in (a6) represent peak
intensities of the mirage fringe.



�y

tan �B

þW

� �2

� �xþ sðWÞ W2
� 1

� �1=2
h i2

¼ 1; ð2Þ

using the deviation parameter W = �X=X0. The strain para-

meter � is defined by

� ¼
�

Cj�hj cos �B

@2ðh � uÞ

@s0@sh

; ð3Þ

where h is the reciprocal lattice vector, u the displacement

vector due to strain, and s0 and sh the unit vectors in the

transmitted and diffracted beam directions, respectively. In

(2), x and y are the coordinates shown in Fig. 6, sðWÞ is �1 for

W < 0 and +1 for W > 0.

Fig. 6(a) shows the refracted beam trajectory for W� < 0.

The beam is deflected as a result of the strain gradient and

comes back to the surface at A2 (x = xe=2Þ without reflection at

the back surface. The vertex of the hyperbolic trajectory in this

case is given by

xa ¼ �sðWÞ W2
� 1

� �1=2
=�; ð4Þ

ya ¼ � tan �B=�ð Þ½W � sðWÞ�: ð5Þ

As xa = xe=4, � can be determined from the position of a

mirage fringe. In Fig. 6(b) are shown the trajectories of the

beams SðW1Þ in the BB
2

mode excited at the tie point (X1, Y1)

and the trajectories of the beams SðW2Þ in the BB mode

excited at the tie point (X2, Y2). In Fig. 6(c) the change of the

tie point on the dispersion surface is shown when the refracted

beam SðW1Þ propagates from A1 to A3 through A2 , according

to the previous study by Authier (2001). The change in the

direction of the refracted beam on the trajectory between x = 0

and xe=4 corresponds to the change in the position of the tie

point on the d1 side, while the change between x = xe=4 and

xe=2 corresponds to the change on the d2 side.

The intensity of the mirage fringe Ph1im is given by

I ¼ R2
1ðW1Þ þ R2

2ðW2Þ þ 2R1ðW1ÞR2ðW2Þ cos½2	ð��x þ��yÞ�:

ð6Þ

In (6), R1ðWÞ and R2ðWÞ are given by using the boundary

condition of the electric field on the crystal surface as

R1ðW1Þ ¼
Eh3ih ðW1Þ

E0

¼ �rðW1Þ 1� r2ðW1Þ
� �

ð7Þ

and

R2ðW2Þ ¼
Eh2ih ðW2Þ

E0

¼ � 1� r2
ðW2Þ

� �
: ð8Þ

Here, Eh2ih ðW2Þ and Eh3ih ðW1Þ are the electric fields in the

BB and BB
2

modes, respectively. The reflection coefficient

rðWÞ is defined by rðWÞ = D
ð1Þ
h =D

ð1Þ
0 with D

ð1Þ
0 and D

ð1Þ
h being the

electric displacements of the transmitted and diffracted beams.

The superscript (1) means that the beam is excited at a tie

point on the d1 side. The phase of the third term in the right-

hand side of (6) can be expressed as

�� ¼ ��x þ��y ¼ �xðW2Þ � �xðW1Þ þ �yðW2Þ � �yðW1Þ:

ð9Þ

The phases �xðWiÞ and �yðWiÞ (i = 1 for the BB
2

mode and 2 for

the BB mode) are given by

�xðWiÞ ¼ 2	

Z
k0x dx ¼

	xe

d tan �B

þ 2	Mi

Z xi

0

XðWÞ dx ð10Þ

and

�yðWiÞ ¼ 2	

Z
k0y dy ¼

	

d
MiyaðWiÞ þ 2	Mi

Z yaðWiÞ

0

YðWÞ dy;

ð11Þ

where k0x and k0y are the X and Y components of the incident

wavevector in the crystal. The integrations are carried out

along the hyperbolic trajectories of the refracted beams SðW1Þ

and SðW2Þ. By considering the fact that XðWÞ and YðWÞ are

functions of x and y, respectively, the phases can be calculated

as

��x ¼ 2	 2
Rxe=2

0

XðWÞ dx� 4
Rxe=4

0

XðWÞ dx

" #
ð12Þ

and

��y ¼ 2	 �mþ 2
RyaðW2Þ

0

YðWÞ dy� 4
RyaðW1Þ

0

YðWÞ dy

" #
; ð13Þ

where �m = m2 � 2m1 with mi (i = 1, 2) being the number of

lattice planes given by the relation 2yaðWiÞ = mid for each

refracted beam. The integrations over x and y in (12) and (13)

are converted to those over W asZ xi

0

XðWÞ dx ¼ �
X0

�

Z �1

Wi

Wd ðW2
� 1Þ1=2

� �
ð14Þ

and
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Figure 6
Ray trajectories in a bent crystal. (a) Ray trajectory of the mirage
diffraction. (b) Ray trajectories in the mirage fringe. (c) Variation of tie
points.



Z yaðWiÞ

0

YðWÞ dy ¼ �
X0

�

Z �1

Wi

ðW2
� 1Þ1=2 dW: ð15Þ

Then once � is given, the phases ��x, ��y and the intensity I in

(6) can be determined. This in turn means that � can be

determined if the intensity I is known. The dashed curves in

Figs. 5(a3)–5(a6) show the calculated intensities I of equation

(6), which reproduce the observed peak positions quite well.

For reproducing the two peaks in the observed fringes for D =

70 mm in Fig. 5(a6), the value of � is assumed to be 2.5 mm�1.

If � is assumed to be proportional to D, � becomes 1.79 mm�1

for D = 50 mm, which reproduces a single peak Ph1im for D =

50 mm as shown in Fig. 5(a5). The value of � is determined by

comparing the calculated curves with the measured curves.

In Fig. 7 the refracted beam trajectories are shown when W

is changed from �1 to �2. This range of W is determined by

using the maximum value of the glancing angle �max = 15	.

Figs. 7 (a)–7( f) show the trajectories for different strain � = 0,

0.36, 0.71, 1.07, 1.79 and 2.50 mm�1, respectively. The trajec-

tory denoted as E is one which reaches the corner edge (x = L

and y = H) of the crystal. Such a trajectory E exists for

0 < � < 1:07 [Figs. 7(a)–7(c)]. The trajectory for � =

1.07 mm�1 (Fig. 7d) reaches the corner edge at the vertex of

the hyperbola. For � > 1.07, no trajectory reaches to the corner

edge [Figs. 7(e)–7( f)]. A trajectory coming to the lowest

position on the lateral surface without reflection at the back

surface (E0) is in contact with the back surface at the vertex of

its hyperbolic trajectory (ya = H) and comes out from the

crystal at E2. There exists a region (referred to as the ‘dark

region’) below the trajectory E0 in the crystal where no beam

trajectory passes. In Figs. 1(b) and 1(c) the range of the dark

region on the lateral surface is denoted as BB and that on the

back surface as CB. The hatched ranges in Figs. 5(a5)–5(a6)

and (b5)–5(b6) correspond to dark regions and the intensities

in these ranges are quite low. As a result of the dark region, all

the peaks in P 0h should shift toward y0 = 0 and all the peaks in

P 0t toward y00 = 0. These shifts can explain the shifts of the

peaks in the measured results. Trajectory F is the trajectory

with the glancing angle of the beam �max . The corresponding

beam reaches the back surface and is reflected at F1. It reaches

the surface at F2 and the lateral surface at F3 as shown in

Figs. 7(a)–7(e). As � is increased, the position of F2 shifts to

the right. Trajectory G in Figs. 7(b)–7( f) is the trajectory of the

beams which reach the lowest position on the lateral surface in

the BBL mode. Even when the strain is small (� = 0.36 mm�1),

a mirage diffraction should be observed at G1, which corre-

sponds to small peaks in the region indicated by the horizontal

arrow in Fig. 5(a2).

5. Discussion and conclusions

Mirage fringes have been observed in the reflection intensities

from the surface of a bent crystal by changing bending strain,

as shown in Figs. 5(a1)–5(a6). The interference fringes have

also been observed in the diffraction from the lateral surface.

The interference fringes change conspicuously as a function of

bending strain as shown in Figs. 5(b1)–5(b6). The change in

both fringes is explained by using the phase factor given in

equation (9). The change in the phase is caused by the change

in the path length of each refracted beam contributing to the

fringes when the bending strain is changed. Such paths under

two different values of strain are shown in Figs. 1(b) and 1(c).

The calculated intensities of (6) reproduce the characteristic

features such as the number of peaks and the change of the

measured fringes in Fig. 5. In Fig. 5(a6) two peaks are

observed in the mirage fringe when D = 70 mm. Using this fact,

the value of � is determined to be 2.5 mm�1. By using this

value and assuming that � is proportional to D, a peak

corresponding to the mirage peak Ph1im as observed in Fig. 5(a5)

can be reproduced when D = 50 mm as shown by the dashed

line. The phase calculation along the beam trajectories by

using equation (9) works quite well. Peak 5 is observed only

when the bending strain is applied as shown in Fig. 5. This is

because the peak 5 is caused by the interference between the

beam in the BBL mode and those in the BL, BBL and BB2L

modes as shown in Figs. 7(b) and 7(c). The increase in height

of peak 4 in Figs. 5(a4)–(a5) is also caused by the interference

including the beam in the BBL mode. In Fig. 5(a1), the thin

solid line shows the interference intensity between the beam in

the BL mode and that in the BBL mode calculated according

to the method described by Hirano et al. (2008). There are six

peaks in the calculation but only four distinct peaks are

observed in the measured curve. The positions of peaks 1–4

in the calculation show good agreement with those in the

measured curve. However, peaks 5 and 6 obtained in the

calculation are not clearly observed in the measured curve. To

reproduce diminution or disappearance of peaks 5 and 6
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Figure 7
Calculated beam trajectories as a function of W between �2.0 and �1.0.
The strain � is (a) 0, (b) 0.36, (c) 0.71, (d) 1.07, (e) 1.79 and ( f ) 2.5 mm�1.
Trajectory E corresponds to the refracted beam reaching to the corner
edge (x = L, y = H) in (a)–(c) and to the refracted beam coming to the
back surface at its vertex (ya = H) in (d)–(f). Trajectory F corresponds
to the refracted beam with the glancing angle �max . Trajectory G
corresponds to the beam in the BBL mode which reaches the lowest
position on the lateral surface.



properly, it is necessary to calculate the interference among

three beams by taking into account the beam in the BB2L

mode. Moreover, for a bent crystal, it is necessary to calculate

the interference intensity by including mirage diffraction

beams. This will be our future work. The shifts of the peaks in

the diffraction from the lateral surface are shown in

Figs. 5(a5)–5(a6) and 5(b5)–5(b6), which can be explained by

extension of the dark region. As the refracted beams in the BL

and BBL modes cannot reach the dark region, the beams

come out of the crystal only from a restricted area above E2

on the lateral surface shown in Figs. 7(e) and 7( f). The

restricted area decreases as � increases, which results in the

shift of the interference fringes toward the upper side (y = 0)

on the lateral surface.

In conclusion, it is pointed out that the changes of the

interference fringes and the mirage fringes as a function of the

bending strain can be explained by the change of the inter-

ference between the beams in multiple BL modes and those of

mirage diffraction. The interference changes as the phase

factor shifts as a result of the changes in the beam trajectories

owing to the strain. This in turn means that the value of the

bending strain can be determined by analysing these inter-

ference fringes. The analysis based on the dynamical theory of

diffraction, especially by the phase factor calculated along the

beam trajectories given in equation (9), explains the measured

change in interference fringes from the lateral surface as well

as mirage fringes from the surface as a function of strain

gradient. Recently, Fukamachi et al. (2009) have reported an

increase in the reflected beam intensity from the surface of a

bent crystal when the width of the incident X-rays along the

incident azimuth is increased. The intensity increase, i.e. the

beam density increase, can be explained by addition of the

electric fields of the mirage diffraction beam to those of the

reflected beams from the surface. The reported beam density

gain is approximately four but it will be improved much by

using an optimum condition. The mirage diffraction should be

quite useful not only for studying the strain gradient in a

crystal as shown in this paper but also for designing a mono-

chromator for obtaining highly intense X-ray beams.
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